SHORT COURSE: MINE WATER TREATMENT TECHNOLOGIES, CASE STUDIES, AND COSTS

CASE STUDY SULFATE REMOVAL USING ADVANCED ETTRINGITE PROCESS

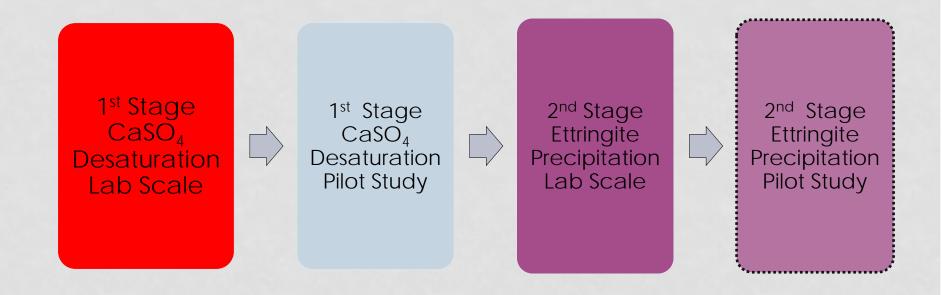
Scott Benowitz, P. E. / Water Engineering Technologies, Inc. 4691 Shandalyn Lane / Bozeman, MT 59718 / +1 406 585 7101 wetsib@benowitz.net

ACKNOWLEDGMENTS

• Topic contributors:

- Scott Benowitz, P.E., Water Engineering Technologies, Inc.
- Kashi Banerjee, PhD, P.E. Veolia Water Technologies

CASE STUDY


SULFATE REMOVAL USING ADVANCED ETTRINGITE PROCESS

TWO - STAGE SULFATE TREATMENT PILOT STUDY USING ADVANCED ETTRINGITE PROCESS

Overview:

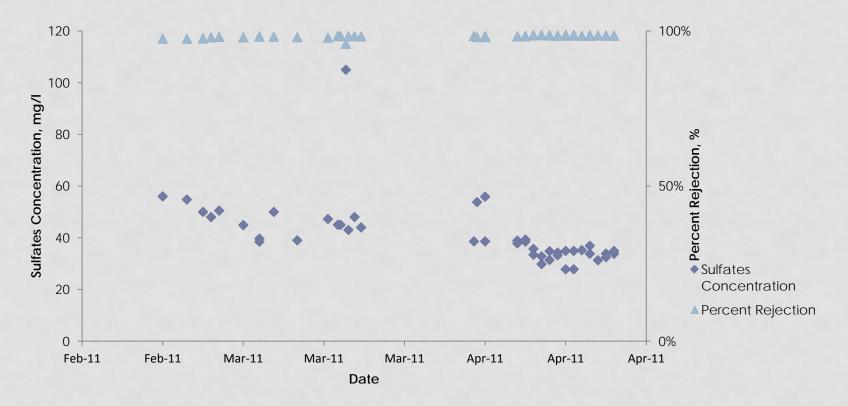
- Reduces sulfate to 100- 200 mg/L by two stage process:
 - 1^{st} Stage: CaSO₄ desaturation; SO₄ is reduced to <1500 mg/L
 - 2nd Stage: advanced chemical precipitation; SO4 reduced to < 200 mg/l
- Treated effluent can be reused or discharged to environment.

TIMELINE OF TWO-STAGE PILOT STUDY

1ST STAGE IMPLEMENTATION

- Project site: copper mine in South America
- Tailing pond water contains high sulfate and calcium
- Project requires sulfate to < 250 mg/l; TDS to < 1,000 mg/l

Tailing Pond Water Characteristics:

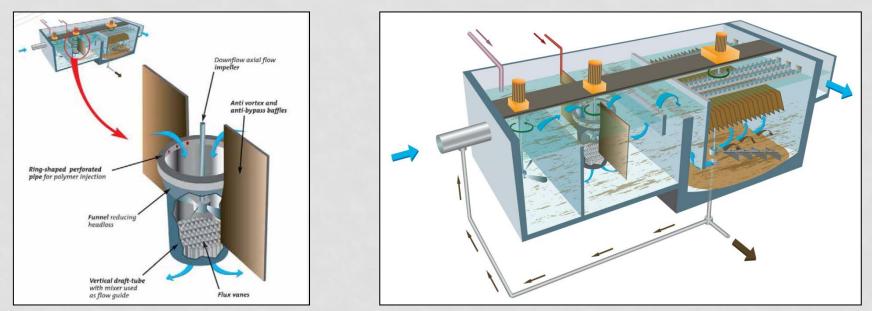

Parameter	Value (mg/l unless indicated)	Parameter	Value (mg/I unless indicated)
рН	7.4 s.u.	Na	104
Mg	21	К	124
SO4	1,830	Са	690
Fe	0.04	Alkalinity	28
Mn	0.17	TDS	3,070
Мо	0.27	Cations	40.02 meq/l
Al	0.05	Anions	44.04 meq/l

Pretreatment and membrane:

- Pretreatment includes iron addition, clarification, multi-media filtration and Green Sand filtration
 - Mo was reduced to < 0.05 mg/L
 - Fe < 0.3 mg/L
 - Mn <0.05 mg/L
- SDI = 3
- NF: Dow Filmtec

1ST STAGE PILOT DATA

NF permeate data


NF Permeate vs Discharge Standards

Parameters	Permeate (mg/l)	Discharge Standard (mg/l)
SO4	35	250
CI	80	200
Са	25	60
AI	<0.1	5
Fe	<0.01	5
Mn	<0.01	0.2
As	<0.005	0.1
Cd	<0.005	0.1
Cu	0.01	0.2

NF Reject Treatment Objectives:

- Precipitate SO₄ as CaSO₄
- Use lime or lime/CaCl₂ as sources of Ca²⁺
- Determine the impact of sludge recirculation ratio on CaSO₄ nucleation and crystal growth
- Ratio = Mass of solids [CaSO₄] in the recycle line/Mass of solids [CaSO₄] formed from the fresh wastewater [NF reject]
- Goal was to reduce SO₄ to < 1,500 mg/L as SO₄ (theoretical solubility limit)

- Calcium sulfate desaturation with sludge recirculation
- NF brine: sulfate 3200 mg/L
- Desaturation process using Turbomix[®] Reactor with 30-minute reaction time followed by MULTIFLO[™] clarification for solid/liquid separation

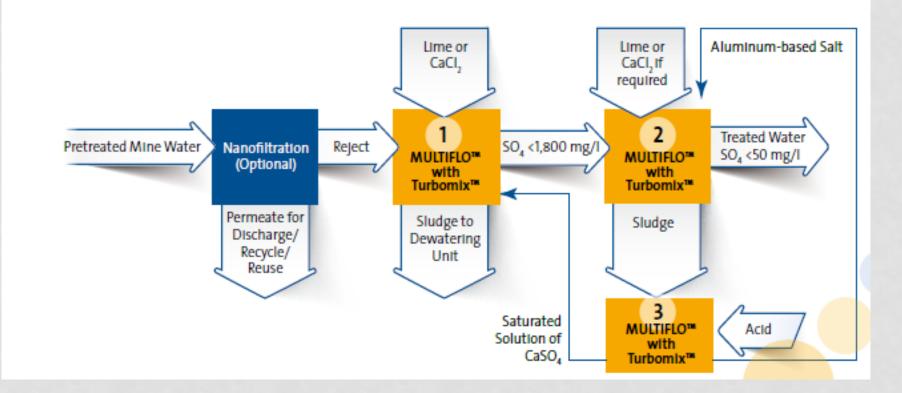
1st stage test results:

• Calcium sulfate precipitation as a function of sludge recirculation ratio:

Sludge Recycle Ratio (Dry mass CaSO4 sludge to influent)	20:1	15:1	10:1	none
рН	9.3	9.3	9.2	9.3
Clarifier overflow SO4, mg/l	1,250	1,100	1,200	2,000

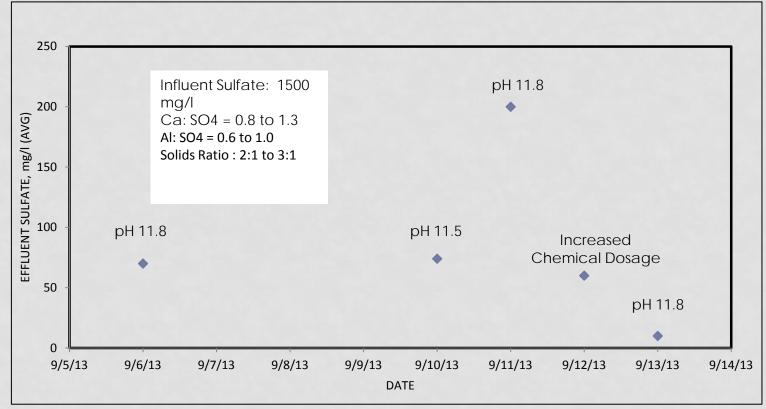
2ND STAGE IMPLEMENTATION

• 2nd Stage Precipitation [Ettringite] Pilot

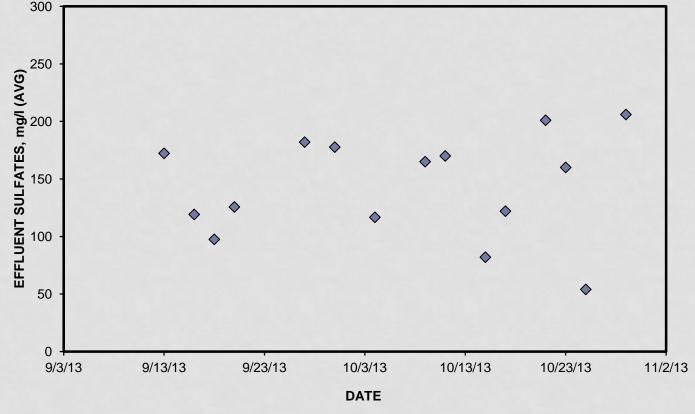

- Site: Greene County, PA
- ARD Water [Effluent from DenSludge™ HDS Process]
- Study Period: 16 weeks

2ND STAGE OBJECTIVES

- Validate Sulfate Reduction Process: < 200 mg/I SO4
- Validate Gibbsite Regeneration and Recovery
- Use Recovered Gibbsite to Precipitate Ettringite
- Process Optimization
 - pH
 - Time
 - solids ratios
 - chemical dosages
 - settling characteristics


2ND STAGE OVERVIEW

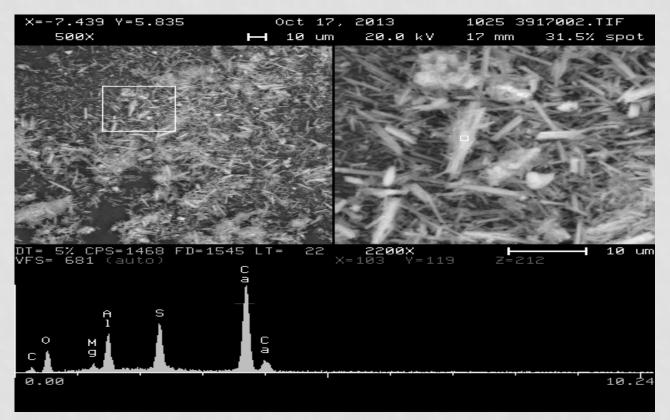
Generalized flow sheet


2ND STAGE OPTIMIZATION USING FRESH GIBBSITE

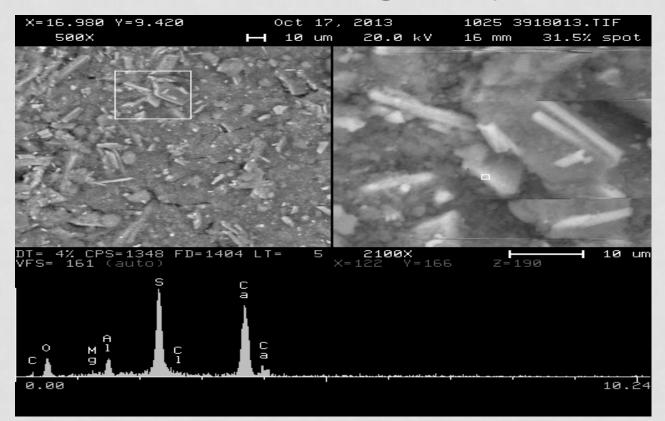
• Effluent sulfate concentration

2ND STAGE RESULTS USING REGENERATED GIBBSITE

• Effluent sulfate concentration-regenerated Gibbsite


2ND STAGE RESULTS

• Effluent aluminum concentration


2ND STAGE RESULTS

• Ettringite crystals in effluent

2ND STAGE RESULTS

• Recovered aluminum sludge sample

TWO-STAGE ADVANCED ETTRINGITE PROCESS - OPEX

- Cost comparison for chemicals and power :
 - With Gibbsite recovery and reuse \$1.60 \$1.70 per 1,000 gal
 - Without Gibbsite recovery and reuse \$8.0 \$9.0 per 1,000 gal

CONCLUSIONS

- Initial pre-treatment and NF
 - Capable of reducing sulfate to < 150 mg/L
 - More than 98% sulfate rejection was achieved

CONCLUSIONS

- Sulfate desaturation and Ettringite removal is a combination of chemical precipitation and adsorption processes
- Important Process parameters:
 - pH
 - Reaction Time
 - Ca : SO4 ratio & AI : SO4 ratio
 - Sludge recirculation with an optimized solids ratio
 - Mass of solids in the recycle line per mass of solids generated by the fresh wastewater

CONCLUSIONS

- 1st stage desaturation process:
 - Sulfate from NF reject can be reduced to < 1500 mg/L in presence of a seed material with proper sludge recirculation ratio.
- 2nd stage process:
 - Seed material need be added only once during the crystallization process
 - More than 95% Gibbsite was recovered and reused in the Ettringite process
 - Using 95% recovered Gibbsite and 5% fresh Gibbsite, sulfate reduced to 100 - 200 mg/L